Context Free Grammars B 219

Conkider the left most derivation again for the string ‘aababb but using different set of

productions
'S = aSbS by using S — aSbS / I \\
= aaSbSbS ~ byusingS— aSbS a
= aabSbS by using S— ¢ / I \\ \
= AabaSbSbS by using S— aSbS b
= aababSbS by using S— ¢ » \
= aababbS by using S— € , | / I \
€
=

aababb by using S— € ’ | l I

: £ : £
Sinoe there are two parse trees for the string aababb by applying leftmost denvatnon, the grammar
is ambiguous.

“abgb” so that two different parse trees are obtained and hence we can show that the grammar is

a
guous

Nl;:?' Instead of deriving the string aababb in the above example, we can derive the strmg
amb;

Example 5.22: Obtain the unambiguous grammar for the gummar shown

E — E+E|E-E

E — E*E|E/E |

E -@®I1 ‘
I — aj]bjc :

and pbtain the derivation for the exptession (a+b) * (a-b)

whi ever occurs first from left to right and finally + or — wh:chever occurs first from left to right.
So, final grammar which is unambiguous is shown below by assuming * and / have the
highest priority compared to that of + and — and also by assuming all these operators are left
asso¢ative
" I — albjc
F - ®|I
T — T*F|T/F|F

‘ E — E+T|E-T|T
So, tltw final grammar which is unambiguous is shown below:
. E — E+T|E-T|T
- T — T*F|T/F|F
F — (B)]I
I — a|bjc

220 B Finite Automata and Formal Languages

The derivation for the string (a+b) * (a-b) is shown below:

E =T
T*F
F*F
(E)*F
(E+T) *F
(T+T) *F
F+T)*F
(I+T)*F
(@a+T)*F
(a+F)*F
@+D*F -
(@+b)*F ' - _ :
@+b)*®]
(a+b)*(E-T) ; :
@+b)*(T-7) . . wie
@+b)*F-T) | 3 1
(a+b)*{I-T) ’ . S
(a+b)*@-T) :
(@a+b)*@-F)
(@+b)*@-0

= (a+b)*(@a-b)
So, the strmg (a+b) * (a-b) is derived from the ngen grammar.

LJULULUBUUBUBUBUBBUULUULUULY

Note: If we assume + and - are having hlghest priority compared to that of * and / and dl the
operators left associate the grammar will be of the form

E — E*T|E/T|T

T — T+F|T-F|F

F — ®]I

I — albjc
Note: If we assume + and — are having highest priority compared to that of * and / and dl the
operators right associate the grammar will be of the form , ;

E — T*E|T/E|T
T — F+T|F-T|F
F - ®]I
- 1" — al|bjc
Note: If we assume + and — are having hlghest priority and left assoclate when compared t¢ that
of * and / and if * and / operators are right associate the grammar will be of the form

E — T*E|T/E|T
T — T+F|T-F|F
F — B]|I
‘1 — albjc

b

Note:

Context Free Grammars & 221

‘MWhenever a left associative operator is involved use left recursive production and if the

operator involved is right-associative, use right recursive production.

Note?
more

A grammar G is ambiguous if there exists some string w € L(G) for which there are two or
dlstmct derivation trees. If there exists a language L for which there is no unambiguous

grammar, then the language is called inherently ambiguous language and the grammar from

which

equiv
the g

There

the language is derived is called inherently ambiguous grammar.
‘ For example, the grammar shown in example 5.15 is ambiguous. But, we have an
ent unambiguous for the grammar (see example 5.22). So, the language generated from
mar shown in example 5.15 is unambiguous.

are some inherently ambiguous grammars (for these grammars unambiguous grammars do

not exist). For example, consider the language

L = {a""c r“d"'|m>l n21} u{a®% "'d"lm>l n21}

The grammar to generate the language is shown below:

— AB|C

— aAb|ab
— cBd|cd
— aCd|aDd
— bDc|be

JAW>w»

The sfring abcd can be derived from the grammar as shown below:

below:

21

S = AB. by using S — AB
= abB by using A— ab
) = abcd) by using B— cd
The shine string abcd can be denved from the by applying different set of productlons as shown
i S = C by using S — C
" = aDd by using C— aDd
= abcd by using D— be
we write the parse trees for both the derivations, the parse trees are different and naturally

So, lf

is in

the glz'mmr is ambiguous. It is not possible to obtain the unambiguous grammar for this and so it
: ”‘ently ambiguous grammar. : .

Example 5.23: Show that the following grammar is ambiguous by taking the stting aab and also

obtain

!he equivalent unambiguous grammar-

S — aS|aSbS|e

-222 M Finite Automata and Formal Languages : | ‘ ’

Solution:Consider the leftmost derivation for the string aab and the corresponding parse treé

P ouss owmgsoas / | S~
= aabS " byusingS—¢€
= aab by using S— € / | I

€

The string aab can also be obtained usmg the following leftmost derivation (shown along with
parse tree)

S = aS | by using S— aS / |
= aaSbS by using S— aSbS
bS by using S
ws wmmes N
I
£ [3

Similarly we can obtain two right most derivations and show that the grammar is ambiguous. The
unamblguous grammar can be obtained by mtroducmg a non-terminal A as shown below:

S — aS|aAbS|e
A — aAbA|e

5.7 Parsing
By parsing, we can check whether a string w can be derived from the grammar G. If w cim be
derived by applymg leftmost derivation from the start symbol, we say that parsing is successful
otherwise, parsing is not successful. Parsing is nothing but finding a sequence of producti ns by
which w in L(G) is derived. Parsing can be easily done by a special type of context free gn
called Simple Grammar which is also called S-Grammar. The formal definition of S-Gran

shown below: 1

Definition: The Simple Grammar or S-Grammar is a specml type of grammar wh
productions are of the form .
_ A—aa
where A € V,a € T and a € V* where a pair (A, a) can occur in at most once in P i.e., i
there on the left hand side of the production, then there can be maximum of one production where
a is the first symbol on the right hand side of the production. For example, consider the ‘
shown below which is an S-Grammar

S — aABB

A — aA|b

B — bBla

An S-Grammar

Context Free Grammars & 223

where las the following grammars are not S-Grammars.

S —» aABb S — aABB
A — aAla
A — aAlb B — bB|b
B — bB|b
Not an S-Grammar because " Not an S-Grammar because of first
of terminal b in S-production symbol in both the A-productions is a

5.24: Find a Simple Grammar (S-Grammar) for the regular expression aaa’b + b

For a .A ammar to be simple grammar, no two production should have the same variable A on the
left and same terminal a as the first symbol on the right hand side of the production and this
termirial should be followed by zero or more. variables. So, the resulting grammar can take the
form o
S — aAfb
A — aB

: "B — aB|b

If we ppply the production
S - b

then from S we get the string b and the derivation for this is

So, t
can

Note|

S = b
‘ string b can be obtained successfully from S. The first part of the regular expression aaa*b
derived using the productions ‘ :

S — aA

A — aB

B — aB|b

that by épplying the first two productions, we get theApartial derivation

S = aA = aaB

igvhich we have obtained two a’s followed by a variable B. It is clear from the B-production
 can generate one or more a’s or a b. Thus, the required language is generated by the

t'The same regular expression can be represented using the following grammar also.

